
Treat the Entire Inherited Process Context as Unvalidated Input 1
ID: 341-BSI | Version: 6 | Date: 11/14/08 5:06:10 PM

Treat the Entire Inherited Process Context as Unvalidated Input
William L. Fithen, Software Engineering Institute [vita3]

Copyright © 2005 Carnegie Mellon University

2005-10-03 L4 / D/P4

Inherited process context that is not validated like other inputs can introduce vulnerability.

Description
It is necessarily the case that when a program starts execution, it inherits an execution context that is
potentially malicious. The only parts of the execution context that can be malicious are those aspects that are
both dynamic and subject to influence by an adversary. That is, anything that an invoking adversary could
change offers the potential of being a trap for the program. Static aspects of the execution environment are
accommodated in the normal engineering approaches.

The only approach to this situation is to design a protocol to establish trust in the context. This includes

• correcting or discarding aspects of the context

• validating those aspects of the context that cannot be corrected

Note that the adversary can change some aspects of the execution context while the program is running. That
is not covered here. Those are generally considered time and state problems.

Dynamic Assembly
Many operating systems and programming languages support assembly of executable programs immediately
before or during execution. The pieces from which the ultimate executable is composed must be acquired
from many places. The most common are

• files from local filesystems

• files from remote (network) filesystems

• files from web, code, or application servers on the network

The specific locations for these component files are generally configured into the operating systems
or runtime environments of the programming languages. In some cases, these locations are incorrectly
configured or can be fooled into loading pieces from vulnerable locations—locations where adversaries can
pre-position maliticous code.

Environments where this has been known to occur include the following:

• Virtually all modern UNIX operating systems have support for shared object libraries. An adversary
may be able to fool the system into loading a shared library before or instead of those the engineer of
the program expects.

• All modern versions of Microsoft Windows operating systems have support for dynamically loaded
libraries. As in the case of UNIX, adversaries may be able to load their DLLs before or instead of those
expected.

• Many modular scripting languages, including

• PERL,

• Ruby, and

• Python.

3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/320-BSI.html (Fithen, William L.)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/320-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html

Treat the Entire Inherited Process Context as Unvalidated Input 2
ID: 341-BSI | Version: 6 | Date: 11/14/08 5:06:10 PM

• Java and .NET include dynamic assembly is an integral part of the platforms themselves. That is,
while most of the execution environments described above use dynamic assembly for efficiency, Java
and .NET use it functionally. Consequently, it cannot be avoided.

References

[CA-1995-14] cert.org. CERT® Advisory CA-1995-14 Telnetd Environment Vulnerability.
http://www.cert.org/advisories/CA-1995-14.html (1997).

[Gosling 05] Gosling, James; Joy, Bill; Steele, Guy; & Bracha, Gilad. The Java Language
Specification, Third Edition. Boston, MA: Addison-Wesley Professional, 2005.
http://java.sun.com/docs/books/jls/.

[Grubb 02] Grubb, Steven. A Survey of Process Environments. http://www.web-insights.net/
env_audit/environments.pdf (2002).

[McClure 99] McClure, Stuart; Scambray, Joel; & Kurtz, George. Hacking Exposed: Network
Security Secrets & Solutions, 316-317. Computing Mcgraw-Hill, 1999.

[Thompson 05] Thompson, Herbert & Chase, Scott. The Software Vulnerability Guide, 211-222.
Charles River Media, 2005.

[VU#602625] cert.org. Vulnerability Note VU#602625: KTH Kerberos environment variables
krb4proxy and KRBCONFDIR may be used insecurely. http://www.kb.cert.org/
vuls/id/602625 (2001).

[VU#943633] cert.org. Vulnerability Note VU#943633: FreeBSD can be compromised locally
via signal handlers. http://www.kb.cert.org/vuls/id/943633 (2002).

Carnegie Mellon Copyright
Copyright © Carnegie Mellon University 2005-2010.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

1. mailto:permission@sei.cmu.edu

http://www.cert.org/advisories/CA-1995-14.html
http://java.sun.com/docs/books/jls/
http://www.web-insights.net/env_audit/environments.pdf
http://www.web-insights.net/env_audit/environments.pdf
http://www.kb.cert.org/vuls/id/602625
http://www.kb.cert.org/vuls/id/602625
http://www.kb.cert.org/vuls/id/943633
mailto:permission@sei.cmu.edu

